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How it started? 



SKI combinator calculus



What is SKI combinator calculus ?

● It was introduced by Moses Schönfinkel (in 1920) and further developed 

later by Haskell Curry (in 1927)

● It is a combinatory logic system and a formal computational system

● The first, and a minimal formalism for universal computation

● Relevant in the mathematical theory of algorithms because it is an extremely 

simple Turing-complete language

● It can be seen as a reduced version of lambda calculus (Alonso Church, 1936)



● Combinators are higher-order functions with no free variables, that 

○ take one function as an argument and

○ return a function

● In mathematics and computer science, a higher-order function (HOF) is 

a function that does at least one of the following:

○ takes one or more functions as arguments

○ returns a function as its result

Combinators



● Combinators are …functions. They take a function as argument, and 
they return a function!

So far everything is a function

● Applying a combinator F to an argument x is called Application and is 
writen Fx

● Application is left associative:       Fxy = (Fx) y       ( ≠   F(x(y))  or F(xy)  )

Application

↷ ↷
1       2



S, K and I combinators definitions

I can also be defined in terms of S and K:   I=SKK
So S and K are the only building blocks needed to have a turing complete language!

Identity
Identitätsfunktion

Constant
Konstanzfunktion

Substitution
Verschmelzungfunktion

Ix = x Kxy = x Sfgx = fx(gx)



Challenge in FORTH



First approach: using normal Forth words

The Application of a combinator consumes 1 argument.

Seems easy: we have words, and a stack… Let's try postfix notation:

Ix = x : x I → x ok… I looks like NOP

Kxy=x : y x K → x K looks like NIP… 

    …Except it's not! 🤦



What is wrong?

Let's have a look at K I :  KIxy = (KI)xy = (KIx)y = Iy = y

Now with normal Forth words:

y x I → y x

y x K → x which would be wrong!

Several issues arise if we define combinators as normal Forth words:

- Combinators take only 1 argument! K can only see x (it can't drop the y)

- Left-associativity when we're in Forth (post-fixed): we need a way to 

delay execution!

Ix = x

Kxy = x



How to address delayed application?

(1) We introduce a Forth word ")" that means "apply": : ) ( xt -- ) EXEC ;

Example: Kxy=x       y x K ) → y KX ) → x

(2) We need K to be a word that leaves an XT on the stack: KXT

We'll then apply K (it executes the XT) with ) :

y x KXT ) → y KX
XT

 ) → x

Application behaviour of K:
In this case the application behaviour of K is to leave on the stack the  XT of a new 
word, whose application behavior will drop y and push x back to the stack



Implementation in AlexForth 6502



ENTER, and :FUNC

\ ENTER, starts a new word in dictionary without header

\ $4C is 6502's JMP

: ENTER, ( -- )  $4C C,   COMPILE COLON ;

\ Create a Function (or combinator)

\ Combinators are Higher Order Functions, meaning

\ they take a function as an argument and return a function

\ which we will eventually apply later using ")"

: :FUNC ( "name" -- ) CREATE ENTER, ] ;



Application operator )

\ Application operator

: )   ( xt -- xt ) EXEC  ; \ Apply <=> "Application"

\ Syntactic sugar definitions

: ))  ( xt -- xt ) ) )   ;

: ))) ( xt -- xt ) ) ) ) ;



I Combinator

When applied, the word I will do nothing

: ENTER, ( -- )   4C C,   COMPILE COLON ;

: :FUNC ( "name" -- ) CREATE ENTER, ] ;

\ Identity Combinator

\ Ix=x    λx.x
:FUNC I ( do nothing ) ;



:FUNC K  \ Constant Combinator   Kxy=x   λxy.x
  HERE   \ leaves the XT of the Kx word on the stack

  ENTER, \ now we compile the Kx word

  COMPILE DROP     \ Drop Y

  COMPILE LIT      \ Push x onto the stack

  SWAP   \ put X back on TOS

  ,      \ store x into the definition of Kx

  COMPILE EXIT

;

K Combinator

 y x K  )

y Kx  ) 

x

The anonymous Kx word is 
a closure, enclosing the 
value of x present on the 
stack when applying K to x

Application 
Behaviour 

of K



Sxyz = xz(yz)

The S word is a "function". 

- when applied, S will create a new word SX 

enclosing x
- when applied, SX will create a new word SXY 

enclosing y (and x),

- when applied, SXY will execute the expected 

S behaviour on x, y and z

S Combinator

:FUNC S \  Sxyz = xz(yz)   λxyz.xz(yz)  

  HERE

  ENTER,

  COMPILE HERE

  COMPILE ENTER,

  COMPILE SWAP

  COMPILE COMPILE COMPILE DUP

  COMPILE COMPILE COMPILE LIT \ y

  COMPILE , \ y

  COMPILE COMPILE COMPILE )

  COMPILE COMPILE COMPILE SWAP

  COMPILE COMPILE COMPILE LIT

  COMPILE LIT \ x

  SWAP

  , \ store x

  COMPILE ,

  COMPILE COMPILE COMPILE ))

  COMPILE COMPILE COMPILE EXIT

  COMPILE EXIT

;



Defining new combinators

As a example, here we define the KI combinator, in terms of K and I:

\ Kite Combinator

\ KIxy=y    λxy.y

I K )   CONSTANT  KI



Booleans in SKI calculus



Boolean helper functions: .T .F and BOOL

\ We define those two functions so we

\ can check results of boolean operations

:FUNC .T .( TRUE )  ;         \ ."  " is .(  ) in AlexFORTH

:FUNC .F .( FALSE ) ;

ok  .T ) → TRUE

ok  .F ) → FALSE

: BOOL .F .T ;



Booleans: True & False

\ BOOLEANS

: T K  ; \ TRUE  λxy.x
: F KI ; \ FALSE λxy.y

\ BOOLEANS

K  CONSTANT T    \ TRUE  λxy.x
KI CONSTANT F    \ FALSE λxy.y

ok  .F .T   T   ))) → TRUE

ok  BOOL    F   ))) → FALSE



NOT combinator: λfxy.fyx

\ NOT = λfxy.fyx
\ S(S(KS)(S(KK)(S(KS)I)))(KK)

K K ) I S K ) S )) K K ) S )) S K ) S )) S ))

CONSTANT NOT

ok  BOOL  T NOT )  )))   → FALSE

ok  BOOL  F NOT )  )))   → TRUE



AND combinator: λpq.pqp

\ AND = λpq.pqp
\ S(S(KS)I)K

K I S K ) S )) S ))

CONSTANT AND

ok  BOOL  T T AND ))  )))  → TRUE

ok  BOOL  F T AND ))  )))  → FALSE

ok  BOOL  T F AND ))  )))  → FALSE

ok  BOOL  F F AND ))  )))  → FALSE



OR combinator: λpq.ppq

\ OR = λpq.pKq
\ S(S(KS)(S(KK)(SII)))(KI)

I K ) I I S )) K K ) S )) S K ) S )) S ))

CONSTANT OR

ok  BOOL  T T OR  ))  )))  → TRUE

ok  BOOL  F T OR  ))  )))  → TRUE

ok  BOOL  T F OR  ))  )))  → TRUE

ok  BOOL  F F OR  ))  )))  → FALSE



NAND combinator: λpq.p(q(KI)(K))K

\ NAND = λpq.p(q(KI)(K))K
\ S(S(KS)(S(S(KS)K)(K(S(SI(K(KI)))(KK)))))(K(KK))

K K ) K ) K K ) I K ) K ) I S )) S )) K ) K S K ) S )) S )) S K ) S )) S ))

CONSTANT NAND

ok  BOOL  T T NAND ))  )))  → FALSE

ok  BOOL  F T NAND ))  )))  → TRUE

ok  BOOL  T F NAND ))  )))  → TRUE

ok  BOOL  F F NAND ))  )))  → TRUE



XOR or Equality combinator: λpq.p(q(T)(F))(q(F)(T))

\ XOR = λpq.p(q(K)(KI))(q(KI)(K))
\ S(S(KS)(S(S(KS)K)(K(S(SI(KK))(K(KI))))))(K(S(SI(K(KI)))(KK)))

K K ) I K ) K ) I S )) S )) K ) I K ) K ) K K ) I S )) S )) K ) K S K )

S )) S )) S K ) S )) S ))

CONSTANT XOR

ok  BOOL  T T XOR ))  )))  → TRUE

ok  BOOL  F T XOR ))  )))  → FALSE

ok  BOOL  T F XOR ))  )))  → FALSE

ok  BOOL  F F XOR ))  )))  → TRUE



Demo
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AlexForth repository: https://github.com/adumont/hb6502/tree/main/forth

Emu6502 repository: https://github.com/adumont/emu6502 

My web page with links to all my projects (and these slides): https://adumont.github.io/ 

Interact with me on Twitter: @adumont https://twitter.com/adumont 

Forth2020 meetings archive, recordings and how to join us:
https://github.com/forth2020/zoom-presentations  
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