
Alexandre Dumont
@adumont

#FORTH2020
Feb 10th, 2024

SKI Calculus
Minimal Formal Computation
in AlexForth on 6502

Content

● Introduction

● SKI Combinator calculus

● Challenge in Forth

● SKI Implementation in AlexForth 6502

● Booleans

● References

How it started?

SKI combinator calculus

What is SKI combinator calculus ?

● It was introduced by Moses Schönfinkel (in 1920) and further developed

later by Haskell Curry (in 1927)

● It is a combinatory logic system and a formal computational system

● The first, and a minimal formalism for universal computation

● Relevant in the mathematical theory of algorithms because it is an extremely

simple Turing-complete language

● It can be seen as a reduced version of lambda calculus (Alonso Church, 1936)

● Combinators are higher-order functions with no free variables, that

○ take one function as an argument and

○ return a function

● In mathematics and computer science, a higher-order function (HOF) is

a function that does at least one of the following:

○ takes one or more functions as arguments

○ returns a function as its result

Combinators

● Combinators are …functions. They take a function as argument, and
they return a function!

So far everything is a function

● Applying a combinator F to an argument x is called Application and is
writen Fx

● Application is left associative: Fxy = (Fx) y (≠ F(x(y)) or F(xy))

Application

↷ ↷
1 2

S, K and I combinators definitions

I can also be defined in terms of S and K: I=SKK
So S and K are the only building blocks needed to have a turing complete language!

Identity
Identitätsfunktion

Constant
Konstanzfunktion

Substitution
Verschmelzungfunktion

Ix = x Kxy = x Sfgx = fx(gx)

Challenge in FORTH

First approach: using normal Forth words

The Application of a combinator consumes 1 argument.

Seems easy: we have words, and a stack… Let's try postfix notation:

Ix = x : x I → x ok… I looks like NOP

Kxy=x : y x K → x K looks like NIP…

 …Except it's not! 🤦

What is wrong?

Let's have a look at K I : KIxy = (KI)xy = (KIx)y = Iy = y

Now with normal Forth words:

y x I → y x

y x K → x which would be wrong!

Several issues arise if we define combinators as normal Forth words:

- Combinators take only 1 argument! K can only see x (it can't drop the y)

- Left-associativity when we're in Forth (post-fixed): we need a way to

delay execution!

Ix = x

Kxy = x

How to address delayed application?

(1) We introduce a Forth word ")" that means "apply": :) (xt --) EXEC ;

Example: Kxy=x y x K) → y KX) → x

(2) We need K to be a word that leaves an XT on the stack: KXT

We'll then apply K (it executes the XT) with) :

y x KXT) → y KX
XT

) → x

Application behaviour of K:
In this case the application behaviour of K is to leave on the stack the XT of a new
word, whose application behavior will drop y and push x back to the stack

Implementation in AlexForth 6502

ENTER, and :FUNC

\ ENTER, starts a new word in dictionary without header

\ $4C is 6502's JMP

: ENTER, (--) $4C C, COMPILE COLON ;

\ Create a Function (or combinator)

\ Combinators are Higher Order Functions, meaning

\ they take a function as an argument and return a function

\ which we will eventually apply later using ")"

: :FUNC ("name" --) CREATE ENTER,] ;

Application operator)

\ Application operator

:) (xt -- xt) EXEC ; \ Apply <=> "Application"

\ Syntactic sugar definitions

:)) (xt -- xt))) ;

:))) (xt -- xt)))) ;

I Combinator

When applied, the word I will do nothing

: ENTER, (--) 4C C, COMPILE COLON ;

: :FUNC ("name" --) CREATE ENTER,] ;

\ Identity Combinator

\ Ix=x λx.x
:FUNC I (do nothing) ;

:FUNC K \ Constant Combinator Kxy=x λxy.x
 HERE \ leaves the XT of the Kx word on the stack

 ENTER, \ now we compile the Kx word

 COMPILE DROP \ Drop Y

 COMPILE LIT \ Push x onto the stack

 SWAP \ put X back on TOS

 , \ store x into the definition of Kx

 COMPILE EXIT

;

K Combinator

 y x K)

y Kx)

x

The anonymous Kx word is
a closure, enclosing the
value of x present on the
stack when applying K to x

Application
Behaviour

of K

Sxyz = xz(yz)

The S word is a "function".

- when applied, S will create a new word SX

enclosing x
- when applied, SX will create a new word SXY

enclosing y (and x),

- when applied, SXY will execute the expected

S behaviour on x, y and z

S Combinator

:FUNC S \ Sxyz = xz(yz) λxyz.xz(yz)

 HERE

 ENTER,

 COMPILE HERE

 COMPILE ENTER,

 COMPILE SWAP

 COMPILE COMPILE COMPILE DUP

 COMPILE COMPILE COMPILE LIT \ y

 COMPILE , \ y

 COMPILE COMPILE COMPILE)

 COMPILE COMPILE COMPILE SWAP

 COMPILE COMPILE COMPILE LIT

 COMPILE LIT \ x

 SWAP

 , \ store x

 COMPILE ,

 COMPILE COMPILE COMPILE))

 COMPILE COMPILE COMPILE EXIT

 COMPILE EXIT

;

Defining new combinators

As a example, here we define the KI combinator, in terms of K and I:

\ Kite Combinator

\ KIxy=y λxy.y

I K) CONSTANT KI

Booleans in SKI calculus

Boolean helper functions: .T .F and BOOL

\ We define those two functions so we

\ can check results of boolean operations

:FUNC .T .(TRUE) ; \ ." " is .() in AlexFORTH

:FUNC .F .(FALSE) ;

ok .T) → TRUE

ok .F) → FALSE

: BOOL .F .T ;

Booleans: True & False

\ BOOLEANS

: T K ; \ TRUE λxy.x
: F KI ; \ FALSE λxy.y

\ BOOLEANS

K CONSTANT T \ TRUE λxy.x
KI CONSTANT F \ FALSE λxy.y

ok .F .T T))) → TRUE

ok BOOL F))) → FALSE

NOT combinator: λfxy.fyx

\ NOT = λfxy.fyx
\ S(S(KS)(S(KK)(S(KS)I)))(KK)

K K) I S K) S)) K K) S)) S K) S)) S))

CONSTANT NOT

ok BOOL T NOT)))) → FALSE

ok BOOL F NOT)))) → TRUE

AND combinator: λpq.pqp

\ AND = λpq.pqp
\ S(S(KS)I)K

K I S K) S)) S))

CONSTANT AND

ok BOOL T T AND))))) → TRUE

ok BOOL F T AND))))) → FALSE

ok BOOL T F AND))))) → FALSE

ok BOOL F F AND))))) → FALSE

OR combinator: λpq.ppq

\ OR = λpq.pKq
\ S(S(KS)(S(KK)(SII)))(KI)

I K) I I S)) K K) S)) S K) S)) S))

CONSTANT OR

ok BOOL T T OR))))) → TRUE

ok BOOL F T OR))))) → TRUE

ok BOOL T F OR))))) → TRUE

ok BOOL F F OR))))) → FALSE

NAND combinator: λpq.p(q(KI)(K))K

\ NAND = λpq.p(q(KI)(K))K
\ S(S(KS)(S(S(KS)K)(K(S(SI(K(KI)))(KK)))))(K(KK))

K K) K) K K) I K) K) I S)) S)) K) K S K) S)) S)) S K) S)) S))

CONSTANT NAND

ok BOOL T T NAND))))) → FALSE

ok BOOL F T NAND))))) → TRUE

ok BOOL T F NAND))))) → TRUE

ok BOOL F F NAND))))) → TRUE

XOR or Equality combinator: λpq.p(q(T)(F))(q(F)(T))

\ XOR = λpq.p(q(K)(KI))(q(KI)(K))
\ S(S(KS)(S(S(KS)K)(K(S(SI(KK))(K(KI))))))(K(S(SI(K(KI)))(KK)))

K K) I K) K) I S)) S)) K) I K) K) K K) I S)) S)) K) K S K)

S)) S)) S K) S)) S))

CONSTANT XOR

ok BOOL T T XOR))))) → TRUE

ok BOOL F T XOR))))) → FALSE

ok BOOL T F XOR))))) → FALSE

ok BOOL F F XOR))))) → TRUE

Demo

References

● Implementation approach inspired in “S/K/ID: Combinators in Forth.” by Johan G. F. Belinfante, in

Journal of FORTH Application and Research archive 4 (1987)
○ Download: https://vfxforth.com/flag/jfar/vol4/no4/article6.pdf

● Lambda Calculus:
○ Fundamentals of Lambda Calculus & Functional Programming in JavaScript, by Gabriel Lebec

○ A Flock of Functions: Combinators, Lambda Calculus, & Church Encodings in JS - Part II, by Gabriel

Lebec

● Combinators:
○ Standford, CS242: Programming Languages(https://web.stanford.edu/class/cs242/materials.html)

Combinator Calculus

○ https://en.wikipedia.org/wiki/SKI_combinator_calculus

○ Combinators: A Centennial View—Stephen Wolfram Writings

○ Where Did Combinators Come From? Hunting the Story of Moses Schönfinkel, by Stephen Wolfram

https://www.semanticscholar.org/paper/S-K-ID%3A-Combinators-in-Forth-Belinfante/9f63ba9e01c72b2d60a5467002c2e4ffc4a28606#citing-papers
https://www.semanticscholar.org/paper/S-K-ID%3A-Combinators-in-Forth-Belinfante/9f63ba9e01c72b2d60a5467002c2e4ffc4a28606#citing-papers
https://vfxforth.com/flag/jfar/vol4/no4/article6.pdf
https://www.youtube.com/watch?v=3VQ382QG-y4
https://www.youtube.com/watch?v=pAnLQ9jwN-E&t=0s
https://www.youtube.com/watch?v=pAnLQ9jwN-E&t=0s
https://web.stanford.edu/class/cs242/materials.html
https://web.stanford.edu/class/cs242/materials/lectures/lecture02.pdf
https://en.wikipedia.org/wiki/SKI_combinator_calculus
https://writings.stephenwolfram.com/2020/12/combinators-a-centennial-view/#the-world-of-the-s-combinator
https://arxiv.org/ftp/arxiv/papers/2108/2108.08707.pdf

AlexForth repository: https://github.com/adumont/hb6502/tree/main/forth

Emu6502 repository: https://github.com/adumont/emu6502

My web page with links to all my projects (and these slides): https://adumont.github.io/

Interact with me on Twitter: @adumont https://twitter.com/adumont

Forth2020 meetings archive, recordings and how to join us:
https://github.com/forth2020/zoom-presentations

Links

Alexandre Dumont

@adumont

https://github.com/adumont/hb6502/tree/main/forth#homebrew-6502-sbc---forth
https://github.com/adumont/emu6502
https://adumont.github.io/
https://twitter.com/adumont
https://github.com/forth2020/zoom-presentations

Thank you!

